METABOLIC OSCILLATIONS: Cellular decision-making

For this post as part of the “Metabolic oscillations” series, Josi Buerger introduces us to the publications that inspired the creation of this ITN network. The series will focus on the underlying concepts, explain the four main publications stretching from 2010 to 2016, and lay out how the Fellows’ efforts will push this work forward into 2017.

Regulation is at the heart of the cell

Within the cell, genes and proteins are regulated. There are two reasons for this: firstly, a cell can respond to its environment by changing or regulating its internal state. Secondly, it is much more cost-effective if this change happens by modulating existing structures instead of tearing everything down and creating it from scratch. Consider how much less effort it is to dim the lights in the evening as opposed to dismantling the electrical circuits and then reconstruct them in the morning…

The ability to regulate internal states is the basic concept of the first publication featured as part of our “Metabolic oscillations” series, Bacterial adaptation through distributed sensing of metabolic fluxes.  In today’s post we’ll discuss the basic concept of cells responding to their environment and use a textbook example: carbon source utilization. Or, in more laymen’s terms: cells have food preferences.

Cells have food preferences.

Weird, isn’t it? But Escherichia coli’s sweet tooth is one of the cornerstone experiments in the field of microbiology dating back to 1957 (Cohen & Monod). Also there is a link between preferring one type of food and changing cellular metabolism to suit the preference. For example, E. coli loves glucose (a type of sugar). When glucose passes through the outer membrane of the cell, it activates a number of other processes which all help the cell to preferentially eat the glucose.


You can see this in the image on the right: the blue line indicates E. coli cell growth in an environment where both glucose and acetate is available. The total amount of glucose is indicated by the dotted line, which decreases as the cells consume it to grow. Once all the glucose is consumed, the cells are forced to switch to acetate, indicated by the drawn-through line (Image modified from Kotte et al., 2010).

How to sense acetate?

So far, so good.  Yet as always in biology, the picture becomes more complicated as soon as you zoom in on the details.

For glucose, there is an elegant link between transport and regulation. But even though cellular behaviour to acetate is well-documented, it is unknown how cells detect acetate. Generally, there are two main detection systems: membrane-based sensing as with glucose, or transcription-factor based sensing where the molecule is recognised by a specific sensing modules. Neither system has been found for acetate, despite decades of interest.

Here’s the cool bit about Bacterial adaptation through distributed sensing of metabolic fluxes.  The researchers show that the preference of glucose to acetate can be explained by elements of the cell that we already know about. There isn’t some undiscovered acetate sensing system, but rather the elements of the cell can behave in more ways than we thought!

The details? Well, you will just have to wait for our next post…..



Kotte, Oliver, Judith B. Zaugg, and Matthias Heinemann. “Bacterial adaptation through distributed sensing of metabolic fluxes.” Molecular systems biology 6.1 (2010): 355.



Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s